rectangle-packer documentation

Release 2.0.1

Daniel Andersson

Jul 13, 2022
1 Welcome to rectangle-packer 1
1.1 Installation 1
1.2 Basic usage 1
1.3 Examples 2
2 Module Reference 5
2.1 Functions 5
2.2 Exceptions 6
2.3 Helper functions 6
3 Benchmarks 8
3.1 Packing density 8
3.2 Time complexity 14
4 The Algorithm 17
5 Changelog 20
5.1 Version 2.0.1 (2021-05-13) 20
5.2 Version 2.0.0 (2020-12-29) 20
5.3 Version 1.1.0 (2019-01-26) 21
5.4 Version 1.0.0 (2017-07-23) 21
Python Module Index 22
Index 23

Welcome to rectangle-packer

Primary use: Given a set of rectangles with fixed orientations, find a bounding box of minimum area that contains them all with no overlap.

This project is inspired by Matt Perdeck's blog post Fast Optimizing Rectangle Packing Algorithm for Building CSS Sprites ${ }^{1}$.

- The latest documentation is available on Read the Docs².
- The source code is available on GitHub ${ }^{3}$.

1.1 Installation

Install latest version from PyPI^{4} :

```
$ python3 -m pip install rectangle-packer
```

Or clone the repository ${ }^{5}$ and install with:

```
$ python3 setup.py install
```


1.2 Basic usage

```
# Import the module
>>> import rpack
# Create a bunch of rectangles (width, height)
>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]
# Pack
```

[^0]```
>>> positions = rpack.pack(sizes)
The result will be a list of (x, y) positions:
>>> positions
[(0, 0), (58, 0), (289, 0), (289, 113)]
```

The output positions are the lower left corner coordinates of each rectangle in the input.
These positions will yield a packing with no overlaps and enclosing area as small as possible (best effort).

## Note:

- You must use positive integers as rectangle width and height.
- The module name is rpack which is an abbreviation of the package name at PyPI (rectangle-packer).
- The computational time required by rpack.pack () increases by the number and size of input rectangles. If this becomes a problem, you might need to implement your own divide-and-conquer algorithm ${ }^{6}$.


### 1.3 Examples

## Example A:

Packing density $97.97 \%$ ( $3301 \times 799$ ), 10 rectangles.


## Example B:

[^1]Packing density 95.83\% (607 x 376), 90 rectangles.


Example C: Sometimes the input rectangles simply cannot be packed in a good way. Here is an example of low packing density:

Packing density $69.61 \%$ ( $970 \times 1036$ ), 10 rectangles.


Example D: The image below is contributed by Paul Brodersen, and illustrates a solution to a problem discussed
at stackoverflow ${ }^{7}$.


[^2]
## CHAPTER 2

## Module Reference

### 2.1 Functions

```
rpack.pack (sizes:Iterable[Tuple[int, int]], max_width=None, max_height=None) }->\mathrm{ List[Tuple[int,
 int]]
Pack rectangles into a bounding box with minimal area.
```

The result is returned as a list of coordinates " $\mathrm{x}, \mathrm{y}$ )", which specifices the location of each corresponding input rectangle's lower left corner.
The helper function bbox_size () can be used to compute the width and height of the resulting bounding box. And packing_density () can be used to evaluate the packing quality.

The algorithm will sort the input in different ways internally so there is no need to sort sizes in advance.
The GIL is released when C-intensive code is running. Execution time increases by the number and size of input rectangles. If this becomes a problem, you might need to implement your own divide-and-conquer algorithm ${ }^{8}$.

## Example:

```
Import the module
>>> import rpack
Create a bunch of rectangles (width, height)
>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]
Pack
>>> positions = rpack.pack(sizes)
The result will be a list of (x, y) positions:
>>> positions
[(0, 0), (58, 0), (289, 0), (289, 113)]
```


## Parameters

- sizes (Iterable[Tuple[int, int]]) -"(width, height)" of the rectangles to pack. Note: integer values only!

[^3]- max_width (Union[None, int]) - Force the enclosing rectangle to not exceed a maximum width. If not possible, rpack. PackingImpossibleError will be raised.
- max_height (Union [None, int]) - Force the enclosing rectangle to not exceed a maximum height. If not possible, rpack. PackingImpossibleError will be raised.

Returns List of positions ( $\mathrm{x}, \mathrm{y}$ ) of the input rectangles.
Return type List[Tuple[int, int]]

### 2.2 Exceptions

## class rpack.PackingImpossibleError

Packing rectangles is impossible with imposed restrictions.
This can happen, for example, if max_width is strictly less than the widest rectangle given to rpack. pack().

If possible, a partial result will be given in the second argument, with the positions of packed rectangles up till the point of failure.

### 2.3 Helper functions

rpack.bbox_size (sizes, positions) $\rightarrow$ Tuple[int, int]
Return bounding box size (width, height) of packed rectangles.
Useful for evaluating the result of rpack.pack ().
Example:

```
>>> import rpack
>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]
>>> positions = rpack.pack(sizes)
>>> bbox_size(sizes, positions)
(335, 222)
```


## Parameters

- sizes (List[Tuple[int, int]])-List of rectangle sizes (width, height).
- positions (List[Tuple[int, int]])-List of rectangle positions (x, y).

Returns Size (width, height) of bounding box covering rectangles having sizes and positions.
Return type Tuple[int, int]
rpack.packing_density (sizes, positions) $\rightarrow$ float
Return packing density of packed rectangles.
Useful for evaluating the result of rpack.pack ().
Example:

```
>>> import rpack
>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]
>>> positions = rpack.pack(sizes)
```

>>> packing_density(sizes, positions)
0.8279279279279279

## Parameters

- sizes (List [Tuple[int, int]])- List of rectangle sizes (width, height).
- positions (List[Tuple[int, int]])-List of rectangle positions (x, y).

Returns Packing density as a fraction in the interval [0, 1], where 1 means that the bounding box area equals the sum of the areas of the rectangles packed, i.e. perfect packing.

Return type float
rpack. overlapping (sizes, positions)
Return indices of overlapping rectangles, else None.
Mainly used for test cases.
Example:

```
>>> sizes = [(10, 10), (10, 10)]
>>> positions = [(0, 0), (10, 10)]
>>> overlapping(sizes, positions) is None
True
>>> positions = [(0, 0), (5, 5)]
>>> overlapping(sizes, positions)
(0, 1)
```


## Parameters

- sizes (List[Tuple[int, int]])-List of rectangle sizes (width, height).
- positions (List[Tuple[int, int]])-List of rectangle positions (x, y).

Returns Return indices (i, j) if i-th and j-th rectangle overlap (first case found). Return None if no rectangles overlap.
Return type Union[None, Tuple[int, int]]

## CHAPTER 3

## Benchmarks

This section investigates the performance of rpack.pack(). The packing quality and time complexity are studied by packing many randomly generated rectangles.

### 3.1 Packing density

The packing density is defined as the fraction of the space filled by the rectangles in the bounding box. The objective of rpack.pack () is to obtain a packing of the greatest possible density.

The boxplot below shows how the packing density is correlated to the number of rectangles packed. Ten cases were generated, for $10,20, \ldots, 100$ rectangles. For each case, rectangles were randomly generated by picking side lengths uniformly distributed in the interval [1, 1000]. If you are not familiar with boxplots, have a look at the boxplot ${ }^{9}$ article at Wikipedia for an introduction.

[^4]Packing density, rectangle side lengths $\sim$ Uniff 1,1000$\}$


The boxplot below shows how the packing density varies by rectangle side lengths.

Packing density


The scatter plot below shows how the minimal bounding box shape is distributed based on how many rectangles were packed. In all runs, random rectangles were generated by picking side lengths uniformly distributed in the interval $[1,1000]$. It is interesting to note, that the minimal bounding box tends to be more extreme (very wide or very tall) when the number of rectangles increases.


Example of 100 rectangles, high packing density:
Packing density $96.44 \% ~(18581 \times 1394), 100$ rectangles.


Example of 100 rectangles, lower packing density:

Packing density $94.84 \%$ ( $1924 \times 13878$ ), 100 rectangles.


### 3.1.1 Squares test

The squares test packs an increasing number of square rectangles.
See this PDF, squares.pdf ${ }^{10}$, for packed squares $1 \mathrm{x} 1, \ldots, \mathrm{NxN}$, for $\mathrm{N}=1, \ldots, 100$. A summary is shown in the plot below.

See Richard E. Korf's paper Optimal Rectangle Packing: Initial Results ${ }^{11}$ for the optimal solutions for all squares up to $\mathrm{n}=22$.

[^5]Packing density, squares


### 3.1.2 Circumference test

The circumference test packs an increasing number of rectagins having the same circumference. For exampe, $\mathrm{N}=$ 4 , implies the rectangles $4 \times 1,3 \times 2,2 \times 3$ and $1 \times 4$.
See this PDF, circum.pdf ${ }^{12}$, for packed rectangles $\mathrm{Nx} 1, \ldots, 1 \mathrm{xN}$, for $\mathrm{N}=1, \ldots, 100$. A summary is shown in the plot below.
${ }^{12} \mathrm{https}: / /$ penlect.com/rpack/2.0.1/img/circum.pdf

Packing density, fixed circumference rectangles


### 3.2 Time complexity

In computer science, the time complexity is the computational complexity that describes the amount of time it takes to run an algorithm.

This section presents how rpack.pack () performs with increasing rectangle count and size.
The figure below shows the increased computational cost when the average rectangle side length is increased. For each measurement point, 100 random rectangles were generated by picking independent uniformely distributed side lengths in the interval [1, 1000]. The procedure was repeated several times and the vertical lines indicates the standard deviation.

## Computation time, 100 rectangles



The figure below shows the increased computational cost when the number of rectangles are increased. For each measurement point, a set of random rectangles were generated by picking independent uniformely distributed side lengths in the interval [1, 1000]. For these 10 points, a qubic polynomial fits the data well (a quadratic does not). However, this is not a proof that the average complexety actually is $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$.

Computation time, rectangle side lengths $\sim$ Unif $\{1,1000\}$


## CHAPTER 4

## The Algorithm

To find the minimum bounding box, a lot of candidate bounding boxes are tested.
The algorithm keeps track of a grid of cells internally. Each cell belongs to a column and a row. The index of the column and row are used together as a key in a lookup table (known as the "jump matrix") which contains and information needed to decide if the corresponding cell is free or occupied.

As more and more rectangles are added, the grid gets partitioned in smaller and smaller pieces, and the number of cells, columns and rows increases.

If all rectangles were successfully packed inside the bounding box, its area is recorded and another bounding box, with smaller area is selected - and the procedure continues on that candidate. When all feasible bounding boxes are tested, the best one is used for the final packing. The rectangles' positions from this final packing is returned by rpack.pack().
Extra grid lines have been added to the image below to demonstrate how these cells are created.


The algorithm is not documented more than this yet. Until it is, you will have to study the files src/ rpackcore.c and rpack/_core.pyx for more details.

## Changelog

### 5.1 Version 2.0.1 (2021-05-13)

## Bugfixes:

- rpack.pack () behaved incorrectly when the arguments max_width and/or max_height were used. For instance, it could return incorrect rectangle positions which made the rectangles overlap.


### 5.2 Version 2.0.0 (2020-12-29)

## Added:

- Two new keyword arguments to rpack.pack () named max_width and max_height used to optionally set restrictions on the resulting bounding box.
- Exception PackingImpossibleError.
- Function rpack.bbox_size.
- Function rpack.packing_density.
- Function rpack. overlapping.
- Build dependency to Cython.


## Changed:

- Improved rpack.pack () algorithm to yield higher packing density.
- Improved rpack. pack () time complexity; ~x100 faster compared to version 1.1.0.
- The rectangles are sorted internally in rpack.pack () so the input ordering does no longer matter.
- Renamed rpack.enclosing_size to rpack.bbox_size.


## Removed/deprecated:

- Function rpack.group (). It is still available at rpack._rpack. group () but will be removed completely in the future.
- Old implementation of rpack.pack(). It is still available at rpack._rpack.pack() but will be removed in the future.

Other changes:

- Updated Sphinx documentation.


### 5.3 Version 1.1 .0 (2019-01-26)

## Added:

- New function rpack. group ().
- Sphinx docs.


## Changed:

- Improved test cases.
- Improved error handling.


### 5.4 Version 1.0.0 (2017-07-23)

## Added:

- First implementation.


## Python Module Index

r
rpack, 1

## B

bbox_size() (in module rpack), 6
0
overlapping () (in module rpack), 7

## $P$

pack() (in module rpack), 5
packing_density() (in module rpack), 6
PackingImpossibleError (class in rpack), 6
R
rpack (module), 1


[^0]:    ${ }^{1} \mathrm{http}: / /$ www.codeproject.com/Articles/210979/Fast-optimizing-rectangle-packing-algorithm-for-bu
    ${ }^{2} \mathrm{https}: / /$ rectangle-packer.readthedocs.io/en/latest/
    ${ }^{3}$ https://github.com/Penlect/rectangle-packer
    ${ }^{4} \mathrm{https}: / /$ pypi.org/project/rectangle-packer/
    ${ }^{5} \mathrm{https}: / /$ github.com/Penlect/rectangle-packer

[^1]:    ${ }^{6} \mathrm{https}: / / \mathrm{en}$. wikipedia.org/wiki/Divide-and-conquer_algorithm

[^2]:    ${ }^{7}$ https://stackoverflow.com/a/53156709/2912349

[^3]:    ${ }^{8} \mathrm{https}: / / \mathrm{en}$. wikipedia.org/wiki/Divide-and-conquer_algorithm

[^4]:    ${ }^{9}$ https://en.wikipedia.org/wiki/Box_plot

[^5]:    ${ }^{10} \mathrm{https}$ ://penlect.com/rpack/2.0.1/img/squares.pdf
    11 https://www.aaai.org/Papers/ICAPS/2003/ICAPS03-029.pdf

