
rectangle-packer documentation
Release 2.0.1

Daniel Andersson

Jul 13, 2022

Contents

1 Welcome to rectangle-packer 1
1.1 Installation . 1
1.2 Basic usage . 1
1.3 Examples . 2

2 Module Reference 5
2.1 Functions . 5
2.2 Exceptions . 6
2.3 Helper functions . 6

3 Benchmarks 8
3.1 Packing density . 8
3.2 Time complexity . 14

4 The Algorithm 17

5 Changelog 20
5.1 Version 2.0.1 (2021-05-13) . 20
5.2 Version 2.0.0 (2020-12-29) . 20
5.3 Version 1.1.0 (2019-01-26) . 21
5.4 Version 1.0.0 (2017-07-23) . 21

Python Module Index 22

Index 23

i

CHAPTER 1

Welcome to rectangle-packer

Primary use: Given a set of rectangles with fixed orientations, find a bounding box of minimum area that contains
them all with no overlap.

This project is inspired by Matt Perdeck’s blog post Fast Optimizing Rectangle Packing Algorithm for Building
CSS Sprites1.

• The latest documentation is available on Read the Docs2.

• The source code is available on GitHub3.

1.1 Installation

Install latest version from PyPI4:

$ python3 -m pip install rectangle-packer

Or clone the repository5 and install with:

$ python3 setup.py install

1.2 Basic usage

Import the module
>>> import rpack

Create a bunch of rectangles (width, height)
>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]

Pack

(continues on next page)

1 http://www.codeproject.com/Articles/210979/Fast-optimizing-rectangle-packing-algorithm-for-bu
2 https://rectangle-packer.readthedocs.io/en/latest/
3 https://github.com/Penlect/rectangle-packer
4 https://pypi.org/project/rectangle-packer/
5 https://github.com/Penlect/rectangle-packer

1

http://www.codeproject.com/Articles/210979/Fast-optimizing-rectangle-packing-algorithm-for-bu
http://www.codeproject.com/Articles/210979/Fast-optimizing-rectangle-packing-algorithm-for-bu
https://rectangle-packer.readthedocs.io/en/latest/
https://github.com/Penlect/rectangle-packer
https://pypi.org/project/rectangle-packer/
https://github.com/Penlect/rectangle-packer

rectangle-packer documentation, Release 2.0.1

(continued from previous page)

>>> positions = rpack.pack(sizes)

The result will be a list of (x, y) positions:
>>> positions
[(0, 0), (58, 0), (289, 0), (289, 113)]

The output positions are the lower left corner coordinates of each rectangle in the input.

These positions will yield a packing with no overlaps and enclosing area as small as possible (best effort).

Note:

• You must use positive integers as rectangle width and height.

• The module name is rpack which is an abbreviation of the package name at PyPI (rectangle-packer).

• The computational time required by rpack.pack() increases by the number and size of input rectangles.
If this becomes a problem, you might need to implement your own divide-and-conquer algorithm6.

1.3 Examples

Example A:

Packing density 97.97% (3301 x 799), 10 rectangles.

Example B:
6 https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

1.3. Examples 2

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

rectangle-packer documentation, Release 2.0.1

Packing density 95.83% (607 x 376), 90 rectangles.

Example C: Sometimes the input rectangles simply cannot be packed in a good way. Here is an example of low
packing density:

Packing density 69.61% (970 x 1036), 10 rectangles.

Example D: The image below is contributed by Paul Brodersen, and illustrates a solution to a problem discussed

1.3. Examples 3

rectangle-packer documentation, Release 2.0.1

at stackoverflow7.

7 https://stackoverflow.com/a/53156709/2912349

1.3. Examples 4

https://stackoverflow.com/a/53156709/2912349

CHAPTER 2

Module Reference

2.1 Functions

rpack.pack(sizes: Iterable[Tuple[int, int]], max_width=None, max_height=None) → List[Tuple[int,
int]]

Pack rectangles into a bounding box with minimal area.

The result is returned as a list of coordinates “(x, y)”, which specifices the location of each corresponding
input rectangle’s lower left corner.

The helper function bbox_size() can be used to compute the width and height of the resulting bounding
box. And packing_density() can be used to evaluate the packing quality.

The algorithm will sort the input in different ways internally so there is no need to sort sizes in advance.

The GIL is released when C-intensive code is running. Execution time increases by the number and size
of input rectangles. If this becomes a problem, you might need to implement your own divide-and-conquer
algorithm8.

Example:

Import the module
>>> import rpack

Create a bunch of rectangles (width, height)
>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]

Pack
>>> positions = rpack.pack(sizes)

The result will be a list of (x, y) positions:
>>> positions
[(0, 0), (58, 0), (289, 0), (289, 113)]

Parameters

• sizes (Iterable[Tuple[int, int]]) – “(width, height)” of the rectangles to
pack. Note: integer values only!

8 https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

5

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

rectangle-packer documentation, Release 2.0.1

• max_width (Union[None, int]) – Force the enclosing rectangle to not exceed
a maximum width. If not possible, rpack.PackingImpossibleError will be
raised.

• max_height (Union[None, int]) – Force the enclosing rectangle to not exceed
a maximum height. If not possible, rpack.PackingImpossibleError will be
raised.

Returns List of positions (x, y) of the input rectangles.

Return type List[Tuple[int, int]]

2.2 Exceptions

class rpack.PackingImpossibleError
Packing rectangles is impossible with imposed restrictions.

This can happen, for example, if max_width is strictly less than the widest rectangle given to rpack.
pack().

If possible, a partial result will be given in the second argument, with the positions of packed rectangles up
till the point of failure.

2.3 Helper functions

rpack.bbox_size(sizes, positions)→ Tuple[int, int]
Return bounding box size (width, height) of packed rectangles.

Useful for evaluating the result of rpack.pack().

Example:

>>> import rpack

>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]
>>> positions = rpack.pack(sizes)

>>> bbox_size(sizes, positions)
(335, 222)

Parameters

• sizes (List[Tuple[int, int]]) – List of rectangle sizes (width, height).

• positions (List[Tuple[int, int]]) – List of rectangle positions (x, y).

Returns Size (width, height) of bounding box covering rectangles having sizes and positions.

Return type Tuple[int, int]

rpack.packing_density(sizes, positions)→ float
Return packing density of packed rectangles.

Useful for evaluating the result of rpack.pack().

Example:

>>> import rpack

>>> sizes = [(58, 206), (231, 176), (35, 113), (46, 109)]
>>> positions = rpack.pack(sizes)

(continues on next page)

2.2. Exceptions 6

rectangle-packer documentation, Release 2.0.1

(continued from previous page)

>>> packing_density(sizes, positions)
0.8279279279279279

Parameters

• sizes (List[Tuple[int, int]]) – List of rectangle sizes (width, height).

• positions (List[Tuple[int, int]]) – List of rectangle positions (x, y).

Returns Packing density as a fraction in the interval [0, 1], where 1 means that the bounding
box area equals the sum of the areas of the rectangles packed, i.e. perfect packing.

Return type float

rpack.overlapping(sizes, positions)
Return indices of overlapping rectangles, else None.

Mainly used for test cases.

Example:

>>> sizes = [(10, 10), (10, 10)]

>>> positions = [(0, 0), (10, 10)]
>>> overlapping(sizes, positions) is None
True

>>> positions = [(0, 0), (5, 5)]
>>> overlapping(sizes, positions)
(0, 1)

Parameters

• sizes (List[Tuple[int, int]]) – List of rectangle sizes (width, height).

• positions (List[Tuple[int, int]]) – List of rectangle positions (x, y).

Returns Return indices (i, j) if i-th and j-th rectangle overlap (first case found). Return None if
no rectangles overlap.

Return type Union[None, Tuple[int, int]]

2.3. Helper functions 7

CHAPTER 3

Benchmarks

This section investigates the performance of rpack.pack(). The packing quality and time complexity are
studied by packing many randomly generated rectangles.

3.1 Packing density

The packing density is defined as the fraction of the space filled by the rectangles in the bounding box. The
objective of rpack.pack() is to obtain a packing of the greatest possible density.

The boxplot below shows how the packing density is correlated to the number of rectangles packed. Ten cases
were generated, for 10, 20, . . . , 100 rectangles. For each case, rectangles were randomly generated by picking
side lengths uniformly distributed in the interval [1, 1000]. If you are not familiar with boxplots, have a look at
the boxplot9 article at Wikipedia for an introduction.

9 https://en.wikipedia.org/wiki/Box_plot

8

https://en.wikipedia.org/wiki/Box_plot

rectangle-packer documentation, Release 2.0.1

10 20 30 40 50 60 70 80 90 100
Number of rectangles

70%

75%

80%

85%

90%

95%

Packing density, rectangle side lengths ~ Unif{1, 1000}

The boxplot below shows how the packing density varies by rectangle side lengths.

3.1. Packing density 9

rectangle-packer documentation, Release 2.0.1

100 200 300 400 500 600 700 800 900 1000 total
rectangle side lengths ~ Unif{1, m}, 100 m 1000

95%

96%

97%

Packing density

The scatter plot below shows how the minimal bounding box shape is distributed based on how many rectangles
were packed. In all runs, random rectangles were generated by picking side lengths uniformly distributed in the
interval [1, 1000]. It is interesting to note, that the minimal bounding box tends to be more extreme (very wide or
very tall) when the number of rectangles increases.

3.1. Packing density 10

rectangle-packer documentation, Release 2.0.1

0 500 1000 1500 2000
Enclosing width / n

0

500

1000

1500

2000

2500
En

clo
sin

g
he

ig
ht

 /
n

Resulting enclosings,
n = No. rectangles, side lengths ~ Unif{1, 1000}

n = 10
n = 20
n = 30
n = 50
n = 100

Example of 100 rectangles, high packing density:

Packing density 96.44% (18581 x 1394), 100 rectangles.

Example of 100 rectangles, lower packing density:

3.1. Packing density 11

rectangle-packer documentation, Release 2.0.1

Packing density 94.84% (1924 x 13878), 100 rectangles.

3.1.1 Squares test

The squares test packs an increasing number of square rectangles.

See this PDF, squares.pdf10, for packed squares 1x1, . . . , NxN, for N = 1, . . . , 100. A summary is shown in the
plot below.

See Richard E. Korf’s paper Optimal Rectangle Packing: Initial Results11 for the optimal solutions for all squares
up to n=22.

10 https://penlect.com/rpack/2.0.1/img/squares.pdf
11 https://www.aaai.org/Papers/ICAPS/2003/ICAPS03-029.pdf

3.1. Packing density 12

https://penlect.com/rpack/2.0.1/img/squares.pdf
https://www.aaai.org/Papers/ICAPS/2003/ICAPS03-029.pdf

rectangle-packer documentation, Release 2.0.1

0 10 20 30 40 50 60 70 80 90 100
Rectangle max side length (n)

82.5%

85.0%

87.5%

90.0%

92.5%

95.0%

97.5%

100.0%

Packing density, squares

3.1.2 Circumference test

The circumference test packs an increasing number of rectagins having the same circumference. For exampe, N =
4, implies the rectangles 4x1, 3x2, 2x3 and 1x4.

See this PDF, circum.pdf12, for packed rectangles Nx1, . . . , 1xN, for N = 1, . . . , 100. A summary is shown in the
plot below.

12 https://penlect.com/rpack/2.0.1/img/circum.pdf

3.1. Packing density 13

https://penlect.com/rpack/2.0.1/img/circum.pdf

rectangle-packer documentation, Release 2.0.1

0 10 20 30 40 50 60 70 80 90 100
Rectangle width + height (n)

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

Packing density, fixed circumference rectangles

3.2 Time complexity

In computer science, the time complexity is the computational complexity that describes the amount of time it
takes to run an algorithm.

This section presents how rpack.pack() performs with increasing rectangle count and size.

The figure below shows the increased computational cost when the average rectangle side length is increased. For
each measurement point, 100 random rectangles were generated by picking independent uniformely distributed
side lengths in the interval [1, 1000]. The procedure was repeated several times and the vertical lines indicates the
standard deviation.

3.2. Time complexity 14

rectangle-packer documentation, Release 2.0.1

100 200 300 400 500 600 700 800 900 1000
rectangle side lengths ~ Unif{1, m}, 100 m 1000

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Se
co

nd
s

Computation time, 100 rectangles
Polyfit t = n +

=0.0012, =0.35
Measurement

The figure below shows the increased computational cost when the number of rectangles are increased. For each
measurement point, a set of random rectangles were generated by picking independent uniformely distributed side
lengths in the interval [1, 1000]. For these 10 points, a qubic polynomial fits the data well (a quadratic does not).
However, this is not a proof that the average complexety actually is O(n^3).

3.2. Time complexity 15

rectangle-packer documentation, Release 2.0.1

10 20 30 40 50 60 70 80 90 100
Number of rectangles

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Se
co

nd
s

Computation time, rectangle side lengths ~ Unif{1, 1000}

Polyfit t = n3 + n2 + n +
=3.5e-06, =-0.00028 =0.0073 =-0.054

Measurement

3.2. Time complexity 16

CHAPTER 4

The Algorithm

To find the minimum bounding box, a lot of candidate bounding boxes are tested.

The algorithm keeps track of a grid of cells internally. Each cell belongs to a column and a row. The index of the
column and row are used together as a key in a lookup table (known as the “jump matrix”) which contains and
information needed to decide if the corresponding cell is free or occupied.

As more and more rectangles are added, the grid gets partitioned in smaller and smaller pieces, and the number of
cells, columns and rows increases.

If all rectangles were successfully packed inside the bounding box, its area is recorded and another bounding box,
with smaller area is selected - and the procedure continues on that candidate. When all feasible bounding boxes
are tested, the best one is used for the final packing. The rectangles’ positions from this final packing is returned
by rpack.pack().

Extra grid lines have been added to the image below to demonstrate how these cells are created.

17

rectangle-packer documentation, Release 2.0.1

18

rectangle-packer documentation, Release 2.0.1

The algorithm is not documented more than this yet. Until it is, you will have to study the files src/
rpackcore.c and rpack/_core.pyx for more details.

19

CHAPTER 5

Changelog

5.1 Version 2.0.1 (2021-05-13)

Bugfixes:

• rpack.pack() behaved incorrectly when the arguments max_width and/or max_height were used.
For instance, it could return incorrect rectangle positions which made the rectangles overlap.

5.2 Version 2.0.0 (2020-12-29)

Added:

• Two new keyword arguments to rpack.pack() named max_width and max_height used to option-
ally set restrictions on the resulting bounding box.

• Exception PackingImpossibleError.

• Function rpack.bbox_size.

• Function rpack.packing_density.

• Function rpack.overlapping.

• Build dependency to Cython.

Changed:

• Improved rpack.pack() algorithm to yield higher packing density.

• Improved rpack.pack() time complexity; ~x100 faster compared to version 1.1.0.

• The rectangles are sorted internally in rpack.pack() so the input ordering does no longer matter.

• Renamed rpack.enclosing_size to rpack.bbox_size.

Removed/deprecated:

• Function rpack.group(). It is still available at rpack._rpack.group() but will be removed com-
pletely in the future.

• Old implementation of rpack.pack(). It is still available at rpack._rpack.pack() but will be
removed in the future.

20

rectangle-packer documentation, Release 2.0.1

Other changes:

• Updated Sphinx documentation.

5.3 Version 1.1.0 (2019-01-26)

Added:

• New function rpack.group().

• Sphinx docs.

Changed:

• Improved test cases.

• Improved error handling.

5.4 Version 1.0.0 (2017-07-23)

Added:

• First implementation.

5.3. Version 1.1.0 (2019-01-26) 21

Python Module Index

r
rpack, 1

22

Index

B
bbox_size() (in module rpack), 6

O
overlapping() (in module rpack), 7

P
pack() (in module rpack), 5
packing_density() (in module rpack), 6
PackingImpossibleError (class in rpack), 6

R
rpack (module), 1

23

	Welcome to rectangle-packer
	Installation
	Basic usage
	Examples

	Module Reference
	Functions
	Exceptions
	Helper functions

	Benchmarks
	Packing density
	Time complexity

	The Algorithm
	Changelog
	Version 2.0.1 (2021-05-13)
	Version 2.0.0 (2020-12-29)
	Version 1.1.0 (2019-01-26)
	Version 1.0.0 (2017-07-23)

	Python Module Index
	Index

